EFFECT OF THE ASYMMETRY OF A HEAT FLOW ON
THE FORCE OF RESISTANCE OF A DROP IN A
SLOW VISCOUS FLOW
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~ We show that if the energy required for the evaporation of a drop is supplied by molecular heat
conduction in a vapor medium, then the calculation of corrections for the Stokes equation re-
quires that we take into account the nonspherical nature of the vapor flow on the surface of the
drop.

We study the quasistationary evaporation of a drop with internal heat release that is limited by an equa-
tion of heat balance. The temperature of the surface of the drop is assumed to be equal to the temperature of
boiling. The transfer of energy from the drop to the vapor medium is realized by emission, molecular heat
conduction, and convection, The temperature difference between the drop and the surface is assumed to be
small in comparison to the temperature of the drop. The numbers Re and R, which are determined according
to the velocity of the slow vapor flow and the velocity of the vapor near the surface of the drop, satisfy the
conditions Re <« R « 1. The slow vapor results in asymmetry in the distribution of the temperature field in
the region of the drop and, consequently, inthe distribution of the velocity of the vapor on its surface,

The vapor motion around the drop is described by the Navier —Stokes equations and equations of con-
tinuity which, as is known [1], lead to the equation for the stream function
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Here ¥ and r are dimensionless stream functions and the distance to the center of the drop; vy and vg are
components of the dimensionless velocity in the spherical coordinate system with the polar axis along the di-
rection u of the velocity of the flow at infinity; a is the radius of the drop; v is the kinematic viscosity. We
must replace r, vy, vg, ¢ by ar, uvy, uvg, w22y to transform to the common dimensional quantities,

The boundary conditions are
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Here w(@) is the dimensionless radial component of the vapor velocity on the surface of the drop.
We seek the solution of Eq. (1) with boundary conditions (2) as
Y =P+ by + Vs (3)
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' Here Py is the stream function of the potential flow that satisfies the equation D%y, = 0 and the boundary con-
ditions )
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If we expand the velocity w in series in Legendre polynomials and limit ourselves to the first two
terms, which assumes the presence of the small parameter determined below, then the stream function

will take the form

Py = —wycos0 + P sinzo.
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The stream function yg in Eq, (3) that describes the flow of the solid sphere in a Stokes approxima-
tion takes the form
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The superposition of the stream function ¢, + Jg does not satisfy the second boundary condition of
2). If we seek a stream function with accuracy up to terms of order R inclusive, then we obtain the fol-
lowing equation to find yy:
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with boundary conditions
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Equation (4) follows from (1) if we replace y with y, and D%y with D2(yo + ¢g) = Dzws in the convective
term before the operator D2,

The solufion of Eq. (4) with boundary conditions (5) takes the form
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We note that the solution obtained corresponds to the partial computation of the convective terms in
Eq. (1), which is justified in region r of order 1 if the expression Re <« R < 1 is realized.

The pressure in the vapor medium is determined from the Navier ~ Stokes equation, which is pre-
sented in dimensionless form for the convective terms given above:
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Here v, vg, and vy are dimensionless velocity fields determined by the stream functions ¥y, g, ¥4; p is
~ the dimensionless pressure which should be replaced by pu’p (p is the density of the vapor) in transforming
to the dimensional quantities.

From this equation the part of the pressure on the boundary of the drop that is essential for calcula-
ting the resistance force takes the following form with the expressions for ¢y, g, and ¢ taken into account:
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The force acting on the drop is determined according to the known velocity field v = v, + vg+v, and
the pressure, It is evident that the direction of the force coincides with the direction of the velocity of the
slow flow 1,

Thus, the projection of the force on the direction u is equal to [2]

k14
F=2na’pu25‘ —vﬁcose—rpcose+~2——. 90, cosd —
Re d

1 (v, . v
r Re

in6 | sin6do.
; ® o )S ]S“

327



Thus, the equation for the force with the degree of accuracy under study takes the form

3

The first term of this equation agrees with the Stokes equation [2], which determines the resistance
of the sphere in the viscous flow. The second term in (7) agrees with thé results obtained in 3,4].
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We must calculate the heat flow on the surface of the drop to determine the coefficients wj and wy in
the equation for the resistance force (7). '

At the sufficiently high thermal conductivity and thermal diffusivity of the fluid inside the drop, we assume
the temperature of its surface Tq to be the same throughout, and the influx of energy from the drop to its sur~
face is easily determined in this case by the equation for the energy balance,

The boundary condition on the surface of the drop takes the form
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Here p' is the density of the drop; k is the intensity of the internal heat release per unit mass; = is the
thermal-conductivity coefficient of the vapor medium; L is the heat of the phase transfer per unit mass;
¢ is the effective degree of the blackness of the drop surface; o is the Stefan— Boltzmann constant, The
quantities referring to the surface of the drop are denoted by the index a, and those referring to the region
distant from it are denoted by the index «,

We assume that the emission does not have a significant effect on the temperature in the region of
the drop, This assumption is justified, as shown in [5], if we satisfy the conditions
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where [ is the mean free path of the emission, and w, is the coefficient of radiant thermal conductivity.
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The temperature distribution in the region of the drop is determined by an equation of convective
heat conductivity:
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Here y is the molecular thermal conductivity. The boundary conditions are
E=1 for r=1, E—>0 a r-—oo.
The solution of the equation can be obtained by the method of joint asymptotic expansions [6, 7].

The monomial internal expansion takes the form £, =1/r, which allows us to determine the mono~

mial external expansion
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The binomial internal expansion &4 = (1/r) + Pe&; is determined by the equation

1 0
At = —
rlsind 3o
(1, 0=0, §— —;— {(cos®—1) as r—oco,
It is sufficient to choose ¥ = ¥ + Ug in calculating &, since the computation of y; results in terms of
a higher order of smallness appearing in £;.

Thus, the binomial internal expansion takes the form
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It follows from boundary condition (8) that
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Here cp is the heat capacity per unit mass of the vapor medium at constant pressure.

In the absence of internal heat release the evaporation of the drop occurring af a temperature when
the radiant energy transfer is negligibly small in comparison to the molecular transfer can be studied as a
sphericosymmetric evaporation if Pe < 1, However, in calculating the effect of the evaporation velocity
on the resistance force, we must consider the nonspherical nature of the evaporation velocity of the drop.
In this case both corrections for the Stokes equation will be single-order quantities in Eq. (7). This is
also valid for R <Re <1, Inthe latter case the necessity arises of taking the Oseen term in Eq. (7) into
account,

In [8] the resistance force and the evaporation velocity conditioned by the molecular thermal conduc-
tivity are numerically studied with the flow of the compressible gas and the variable physical properties
taken into account, However, the final analytic equations for the resistance force and the Nusselt number
are not presented in [8].

Ancther problem arises if the vapor velocity on the surface of the drop is not related to the molecular
thermal conductivity in the medium surrounding the drop, as, for example, when the energy needed for
evaporation acts as a result of the infense internal heat release or the radiant flow in the low-capture me-
dium, Inthis case, we candisregard w; in comparison to w,, and the model of the sphericosymmetric evap-
orating drop will be suitable for seeking the resistance force and the evaporation velocity for P~R € 1,
We must show that this model is also applicable for an intensely evaporating drop [9] (Pe <1, P-Pe < 1)
in connection with the exponential decrease of the heat flow that is in proportion to the increase of the evap-
oration velocity of the drop.
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